1	(a)	2 a	M1	for $\mathbf{a} - \mathbf{b} + \mathbf{a} + \mathbf{b}$ (=2a)	-
-			A1	cao	
	(b)	4	P1	for a process to find $\overrightarrow{MF} = -0.5\mathbf{b} - \mathbf{a} - (\mathbf{a} - \mathbf{b}) \ (=0.5\mathbf{b} - 2\mathbf{a})$ or $\overrightarrow{CE} = \mathbf{a} + \mathbf{b}$ or $\overrightarrow{FM} = \mathbf{a} - \mathbf{b} + \mathbf{a} + 0.5\mathbf{b} \ \ (=2\mathbf{a} - 0.5\mathbf{b})$	Accept ft from (a) providing vectors are clearly stated
			P1	For finding a suitable vector expression for two of $(\overrightarrow{CE} \text{ or } \overrightarrow{EC})$, $(\overrightarrow{CX} \text{ or } \overrightarrow{XC}) \text{ or } (\overrightarrow{EX} \text{ or } \overrightarrow{XE})$ eg. $(\overrightarrow{CX} = a + 0.5b + \frac{1}{n+1}(0.5b - 2a) \text{ or } (\overrightarrow{CX} = -a + b + \frac{n}{n+1}(2a - 0.5b))$ $\overrightarrow{XE} = \frac{1}{n+1}(2a - 0.5b) + 0.5b \text{ or } \overrightarrow{XE} = \frac{n}{n+1}(0.5b - 2a) + 2a \text{ or } \overrightarrow{XC} = \frac{n}{n+1}(0.5b - 2a) + a - b \text{ or } \overrightarrow{XC} = \frac{1}{n+1}(2a - 0.5b) - 0.5b - a \text{ or } \overrightarrow{EX} = -0.5b + \frac{1}{n+1}(0.5b - 2a) \text{ or } \overrightarrow{EX} = -2a + \frac{n}{n+1}(2a - 0.5b)$	$\overrightarrow{CX} = \frac{n-1}{n+1} \mathbf{a} + \frac{n+2}{2(n+1)} \mathbf{b} \qquad \overrightarrow{XE} = \frac{2}{n+1} \mathbf{a} + \frac{n}{2(n+1)} \mathbf{b}$ $\overrightarrow{XC} = \frac{1-n}{n+1} \mathbf{a} + \frac{-n-2}{2(n+1)} \mathbf{b}$ $\overrightarrow{EX} = \frac{-2}{n+1} \mathbf{a} - \frac{n}{2(n+1)} \mathbf{b}$
			P1	for complete process to equate the coefficients of a and b eg $\frac{n-1}{n+1} = \frac{n+2}{2(n+1)}$	
			A1	cao	
	'		P1	ALTERNATIVE for a process to find $\overrightarrow{MF} = -0.5\mathbf{b} - \mathbf{a} - (\mathbf{a} - \mathbf{b}) \ (=0.5\mathbf{b} - 2\mathbf{a})$ or $\overrightarrow{CE} = \mathbf{a} + \mathbf{b}$ or $\overrightarrow{FM} = \mathbf{a} - \mathbf{b} + \mathbf{a} + 0.5\mathbf{b} \ (=2\mathbf{a} - 0.5\mathbf{b})$	Accept ft from (a) providing vectors are clearly stated
			P1	For finding two suitable vector expressions for \overrightarrow{FX} eg $\overrightarrow{FX} = \frac{n}{n+1}(2\mathbf{a} - 0.5\mathbf{b})$ and $\overrightarrow{FX} = \mathbf{a} - \mathbf{b} + k\mathbf{a} + k\mathbf{b}$	
			P1	for complete process to equate the coefficients of a and b eg $\frac{2n}{n+1} - 1 = 1 - \frac{n}{2(n+1)}$	
			A1	сао	

P1 P1	for a process to use $\overrightarrow{ZO} = \overrightarrow{YX} = \mathbf{a} - \mathbf{b}$ oe for a process to find either \overrightarrow{ZP} or \overrightarrow{ZR} in terms of a and b,	Might be embedded in their answer for ZP The award of this mark implies the first two
P1	eg. either $\overrightarrow{ZP} = \mathbf{a} - \mathbf{b} + \frac{1}{3}\mathbf{a}$ or $\overrightarrow{ZR} = \mathbf{a} - \mathbf{b} + \frac{1}{4}\mathbf{b}$ for a process to write \overrightarrow{ZP} and \overrightarrow{ZR} as multiples of the same vector,	process marks.
A1	eg. multiplying both by 12 to get the ratio, $\frac{2}{3}$ (a – 0.75b) and a – 0.75b respectively	

3	Proof	M1	for $\overrightarrow{DQ} = \frac{1}{2} (\mathbf{b} - \mathbf{a})$ oe or $\overrightarrow{EQ} = \frac{1}{2} (\mathbf{a} - \mathbf{b})$ oe	Vectors could be written on the diagram
		M1	for $\overrightarrow{PQ} = \frac{1}{2} \mathbf{a} + \overrightarrow{DQ}$ or $\frac{1}{2} \mathbf{a} + \frac{1}{2} (\mathbf{b} - \mathbf{a})$ oe	_
			or $\overrightarrow{PQ} = -\frac{1}{2}\mathbf{a} + \mathbf{b} + \overrightarrow{EQ}$ or $-\frac{1}{2}\mathbf{a} + \mathbf{b} + \frac{1}{2}(\mathbf{a} - \mathbf{b})$ oe	
		В1	for $\overrightarrow{PQ} = \frac{1}{2} \mathbf{b}$	
		C1	for complete proof with statement, eg $FE = 2PQ$ or FE is a multiple of PQ or $\mathbf{b} = 2(\frac{1}{2}\mathbf{b})$	

4	$\frac{2}{5}$ a + b	P1	for relationship involving D eg $\overrightarrow{OD} = \frac{2}{5} \overrightarrow{OB}$ or $\overrightarrow{DB} = \frac{3}{5} \overrightarrow{OB}$ or for relationship involving E eg $\overrightarrow{BE} = \frac{1}{5} \overrightarrow{BC}$ or $\overrightarrow{EC} = \frac{4}{5} \overrightarrow{BC}$	_
		P1	for relationship involving D in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{OD} = \frac{2}{5} (\mathbf{a} + \mathbf{b})$ or $\overrightarrow{DB} = \frac{3}{5} (\mathbf{a} + \mathbf{b})$ or for relationship involving E in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{BE} = \frac{1}{5} (-\mathbf{b} - \mathbf{a} + 3\mathbf{b})$ oe or $\overrightarrow{EC} = \frac{4}{5} (-\mathbf{b} - \mathbf{a} + 3\mathbf{b})$ oe or $\overrightarrow{BC} = 2\mathbf{b} - \mathbf{a}$ oe or $\overrightarrow{CB} = \mathbf{a} - 2\mathbf{b}$ oe	
		P1	(dep P2) for expression for \overrightarrow{DE} in terms of \mathbf{a} and \mathbf{b} eg $\overrightarrow{DE} = \frac{3}{5} (\mathbf{a} + \mathbf{b}) + \frac{1}{5} (-\mathbf{b} - \mathbf{a} + 3\mathbf{b})$	
		A1	for $\frac{2}{5}$ a + (1) b or $\frac{1}{5}$ (2 a + 5 b)	